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Abstract. The macroscopic dielectric function of a superlattice is used to describe the angular
dependence of the superlattice’s confined phonons and their associated polaritons at long
wavelengths. Results are shown for short-period GaAs/AlAs superlattices making use of a
dielectric tensor derived from 2 linear chain imodel that can take account of the effects of interface
roughness. The method gives a unified description of interface and confined optic phonon modes
in the long-wavelength limit, and provides precise information about the angular dependence of
mode frequencies that are accessible to micro-Raman and far infrared measurements.

1. Introduction

Interface (IF) polaritons in superlattices have been well known for a long time, and
calculation of their dispersion properties has been a straightforward matter when considering
alternative layers of thick bulk materials. In the case of a superlattice of alternating layers
of thicknesses d; and &> and dielectric functions €;{w) and ¢;(w), grown along the z axis,
the dispersion relation for unretarded modes takes the form {1,2]

c:os[qrz (d1 + &2)] = cosh(g.d1) cosh(g dz) + 3{€1/€2+ €2/€1) sinh(qxd[) sinh(g:dz).
' - (I

Electromagnetic IF modes of this type have an overall wavevector of the form (g,, 0, ;) and
the local amplitudes of the fields have maxima at the interfaces and fall off exponentially
from the interfaces with a decay constant ¢,. Thus ¢, serves both as a macroscopic parameter
for the whole superlattice and as a local wavevector within each layer, whilst ¢, is a Bloch
wavevector which is only applicable to the macroscopic propagation.

Recent micro-Raman experiments [3-5} have permitted a study of modes of this type
in semiconductor superlattices. However, the IF polaritons encountered in short-period
superlattices are somewhat more complex than the situation represented by (1), most notably
due to the presence of phonon confinement [5] and interface roughness. Lattice dynamical
calculations [6-8] for such modes are complicated due to the three-dimensional nature of the
problem, and this has prompted a number of investigations in a continuum approximation
[9,10]. Use of such approximations in a manner which accurately mirrors the behaviour
expected from microscopic models has not proved trivial, however, although simple models
which show the basic features are now being reported {11, 12],

However, at long wavelengths an alternative and very simple approach to this problem
can be applied through the use of the macroscopic dielectric functions, as described by Chu
and co-workers [13, 14]. In this paper we illustrate the use of this approach with particular
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reference to short-period GaAs/AlAs superlattice dielectric functions calculated using the
linear chain model of Samson et al [15, 16). This model also permits the inclusion of the
effects of interface roughness.

2. Macroscopic phonon and unretarded interface modes

In the long wavelength limit, the dielectric properties of a superlattice may be represented
by considering the structure as a single uniaxial medium. The simplest treatment, the bulk
slab model, is applicable to long-period superlattices in which confinement effects may be
ignored, and gives the principal components of the resulting dielectric tensor in the form
[17,18]

€xx = €yy = (1d) + €2d2)/(d} + d2) (2)
o = (e7'dy + &' dr)/(d) + di) (3)
In a short-period superiattice, the effects of confinement cannot be ignored. Each principal

component of the dielectric tensor then contains a series of resonances at the appropriate
confined mode frequencies. If damping terms are ignored, they take the form [14]

R
€xx = €3y = €oux (1 - Z _""‘—2) )
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where wr, and wy,, are the frequencies of the confined TO and LO phonons and Ry, and
Ry, are their oscillator strengths, €ooy; and 6oz are the principal components of the high-
frequency dielectric function. The summation over 4 covers all phonon modes in the phonon
bands of both constituents. The values of the various parameters depend on the confinement
model employed. For a superlattice containing interface roughness the dielectric tensor may
still be represented by {4) and (5), but the roughness affects the mode parameters [16].

With a superlattice described as a uniaxial medium of the form represented by (2) and
(3) or by (4} and (5), it is a simple matter to apply standard propagation expressions. Thus
p-polarization propagation in the x—z plane is represented by

g/ + G2 e = WP/ (6)

We now seek phonon-like solutions to (6) by taking the unretarded limit ¢ —» o0, so
that the right band side of (§) vanishes. We consider propagation in which the overall
wavevector makes an angle @ with the z axis, L.e. tand = ¢, /q,. Then {6) becomes

tan’ @ = ~€f€xx. )]

Chu, Ren and Chang [13] describe modes satisfying (7) as anisotropic phonons, and
this is indeed a good description in the macroscopic description represented by a dielectric
tensor. However, as we shall show, they can also be thought of as long-wavelength IF
polaritons, modified by, for instance, phonon confinement or interface roughness.
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In order to demonstrate that (7) can represent [F polaritons we consider first the example
of a long-period superlattice in which the modes are not perturbed by confinement. In this
case we can start by using (1) to represent the IF modes in their unretarded limit. The cos,
sinh and cosh terms in this expression may then be expanded as power series. In the long-
wavelength limit (g.(d) -+ &) € |, ¢q;di € 1, gxd2 € 1) the higher-order terms may be
ignored. The overall result of this procedure is to produce (7) with ¢, and ¢, represented by
(2) and (3). In the long-wavelen gth limit, therefore, (1) and (7) are equivalent representations
of unretarded IF modes, and either expression could be used to obtain the same resuit. This
is hardly surprising when one considers that the propagation expression used by Raj and
Tilley [18] in their derivation of (2} and (3) amounts to (1) in its fully retarded form; they
showed that the long-wavelength lmit of such an expression is (8) with €, and ¢;; defined
by (2) and (3) respectively. The two approaches therefore amount to ignoring retardation at
different points in the calculation. It is worth mentioning, however, that the method of Raj
and Tilley is not the only one that produces equations (2) and (3); Agranovich and Kravtsov
[17] arrive at the same result simply by considering average fields over the two layer types
and using the appropriate boundary conditions at the interfaces.

The above demonstrates that the same modes can either be described as phonons or
unretarded IF polaritons in the bulk. slab case. When extra effects such as confinernent
occur, (7) is still a rigorous description of p-polarized phonons within the long-wavelength
limit. Provided the dielectric function is fully modelled, all contributions are automatically
included in (7}, so that interface contributions need not be separated from those due to
confinement.

We can use a similar analysis to that used for deriving (7} to represent s-polarization
modes. The s-polarization analogue to (6) is

(a2 + a7 rews = 0¥/, = ®
In a similar manner to the p-polarizations case, in the non-retarded limit the right hand
side of {8) disappears. The only solution corresponding to both g, and g real is therefore

€ = OO - )]

which occurs at TO modes. Thus phonon modes in s polarization are not anisotropic.

3. Application to linear chain model

The strength of using (7) and (9) to represent the anisotropy of the modes is that the
equations can be used with any superlattice model that yields a dielectric function. Such a
model may be either continuum or microscopic in nature, and in principle may include extra
effects such as plasmons. Derivation of dielectric functions from a linear chain microscopic
model is problematic because the long-range forces cannot be explicitly incorporated in
a straightforward way, however. Samson et af [15, 16} evade this problem by using only
effective short-range (nearest and next-nearest neighbour) force constants applicable either to
longitudinal or to transverse vibrations, but not to both simultaneously. Overall superlattice
dielectric functions which take the same form as (4) and (5) can be obtained from such
a model by making use of effective ionic charges obtained from bulk LO-TO splittings.
These dielectric functions, although derived from a linear chain model, fully describe
electromagnetic propagation, in the long-wavelength limit, in any direction. A further
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Figure 1. Principal components ¢, {solid lines) and ¢;, (dashed lines} of the dielectric function
of (GaAs)s/(AlAs)s superlattices in the region of GaAs-like optic phonons. (a) Superlattice
with perfect interfaces. (b) Superlattice having an interface roughness cormesponding to W =
1.4 monolayers. All parameters are the same as those used in [16).

embellishment to the rodel is the incorporation, in a manner similar to that used by Chang
and Mitra {19, 201 for mixed crystals, of the effects of interface roughness; since each layer
may contain a mixture of atom types, an average susceptibility at each site is used. Full
details are given elsewhere [16].

The principal components of the dielectric function in the GaAs region of a
(GaAs)s/(AlAs)s superlaitice with perfect interfaces are shown in figure 1{(a), calculated
using the model of Samson et af [16] described above. In the frequency range shown, the
numerical index p on each marked mode frequency ewr,, and i, is chosen to be the sarie
as the index m which represents the number of phonon half-wavelengths within the GaAs
layer. Only odd m modes contribute to the dielectric function because even m modes have
no overall dipole moment, As well as the poles in €., or zeroes in €, which cccur at the
confinred mode frequencies wry, and wyy,, poles in €;; and zeroes in €., are also marked,
and labelled in the form wf, and e, respectively. Thus above each wr,, frequency there
is a corresponding wy ,, frequency at zero in ¢;; and below each wy, frequency there is a
corresponding o7, at a pole in ¢;;. Some useful enlightenment on the pairing of wy,, and
0y, and of @3, and wy, frequencies can be obtained by noting that (4) and (5) may be
re-expressed as

wl _ (w]r; )2
€1x = €y = € —_— (10}
XX yy ooxxl;l wz—(!)%“
w* — w}
— o
€z = EoozzI:[ m (11)

Figure i(b) shows the components for a similar superlattice with interface roughness
corresponding to an ervor function width W of 1.4 monolayers, a value which agrees with far
infrared and Raman measurements on similar samples [16). The modes are marked in the
same way as for a superlattice with perfect interfaces (the additional atloy-like modes which
appear in the model [15, 16] have been ignored in this paper since they have insignificant
oscillator strengths). However, the mode patterns of the atomic displacement are slightly
changed from the previous case. It is evident from comparing figures 1{a) and 1(b) that the
dielectric functions are noticeably influenced by interface roughness. The principal effect is
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that the lower index wr,. and &y, modes are lowered in frequency and that the higher-in(iex
miodes are raised in frequency. The reason for this is discussed by, for instancé, Kechrakos
et al [21], Molinari et al [22], and Samson et af [16].
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Figire 2. Angular dependence of the GaAs-like optic phonon mode frequencies of
(GaAs)s/(AlAs)s soperlattices. {2) Superlattice with perfect interfaces. (b) Superlattice having
" an interface ronghness corresponding to W = 1.4 monolayers.

The angular variation of the p-polarized phonon modes corresponding to (7) is plotted
in figure 2. Before discussing the overall curves we consider the form of the modes present
at @ =0and 8 = x/2. At @ =0 the p-polarization modes are associated with either poles
in ey, (the confined TO frequencies wry. at which E = 0) or the zeroes in ¢,; (the confined
LO frequencies wry,, at which D = 0). Conversely, at & = x/2, each mode is associated
with either a zero in €, (an w,, frequency) or a pole in ¢, (an w4, frequency). These two
8 = 7 /2 cases can quite legitimately be described as LO and TO frequencies respectively in
the same way as for # = 0. P-polarized TO modes, having F = 0 and finite D transverse to
the overall wavevector, propagate paraliel to the interfaces (in the x direction) at poles in €;;
(o, frequencies). LO modes, having D = 0 but finite E parallel to the overall wavevector,
also propagate in the x direction, but at frequencies «f ,, comesponding to zeroes in €.
This behaviour is obvious when one notes the similarity of (10) and (11), and it is also clear
that within the macroscopic description wry, and @i, are no more fundamental than wi,, and
@} .- Although the fact that wr, and wy, are eigenfrequencies which directly come out of
a linear chain model makes them inadvertently appear more fundamental, three-dimensional
microscopic models can calculate e, and wy,, directly in a similar manner.

Since the macroscopic model described here taken no account of displacernents within
individual layers, some confusion may arise in the notation used to label the medes at
8 = = /2; our notation is somewhat different from that used by other authors in cortinuum
or microscopic models. In our case the only important wavevector is a macroscopic one
which applies to the whole superlattice, and at § = /2 this is by definition directed along
the x axis, parallel to the layers. However, within a microscopic model the confinement is
implicitly associated with a local wavevector, directed perpendicular to the layers, which
is considerably larger than the microscopic wavevector considered here. With respect to
the microscopic wavevector, modes at wy, are LO-like and modes at wj, are TO-like,
and this microscopic form of designation is usually used within other models, including
continuum models. However, the x-propagating modes at wf,, are all pure TO phonons in
the macroscopic description given here, and the modes propagating at wj,, are pure LOs.
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This explains the potential]y confusing phenomenon that the wf,, frequencies tend to be
higher than the «},, frequencies despite the fact that the former represent 1O frequencies
and the latter LO frequencies.

The procedure used in assigning index m to the primed frequencies &}, and @, is
inevitably somewhat arbitrary, so this index does not necessarily have any special physical
significance. In particular, it should be noted that the value of m used in labeiling wy,,
and @{,, is not an indication of the number of phonon half-wavelengths confined within
the GaAs layer. The x-propagating phonon at labelled frequency ey in the W = O case,
for instance, has nearly three half-wavelengths confined within the GaAs layer. Although
an effective medium model cannot directly model local displacements, this resuit can be
anticipated from the observation that e, is very close to wr3. This is due to the fact that
the 1.0, mode strength is considerably greater than that of LO; (see the effect of wr3 on
wy, in the dielectric function of figure 1(a)), and is an effect which is also predicted by
continuum [12)] and microscopic [7, 8] models.

We now consider the frequency of the p-polarization modes in the range 0 < 6 < x/2.
Depending on the precise details of the forms of the dielectric functions, mode frequencies
may either increase or decrease with #. Furthermore, modes which are at wr,, frequencies
at 6 = 0 may shift either to e{, or to w}, frequencies, where the indices m and # need not
be the same, at & = x/2. Similarly, modes which are at w,, frequencies at # = 0 may
shift to w1, or ey, at § = = /2. A comparison of figures 2(a) and 2(b) shows that interface
roughness can qualitatively change the behaviour of several modes in these respects. The
determining factor is that ¢,, and €;; must be of opposite sign for the modes to exist, as is
evident from (7). Since interface roughness affects the order of the various cwrm, WLm, Gy,
and wp,, mode frequencies, it also affects the frequency intervais within which the above
condition is satisfied (see figure 1).

The macroscopic fields associated with the p-polarization modes can be determined
through application of the unretarded plane wave forms of Maxwell’s equations. They
show that there is an E field in the wavevector direction and 2 .D field perpendicular to
it. There is no H field. These observations indicate that, within the above description, the
modes are best described as phonons of mixed TO-L0 character. However, other authors,
using continuum models, equivalently describe such modes as hybrids of phonons with IF
polaritons [12].

S-polarization modes do not vary with &, and are TO modes occurring at wry frequencies,
as indicated by (9). For the sake of clarity, they have not been included in figure 2.

4. Polariton modes

It is also informative to consider the general p-polarization polaritons using the full retarded
form of (6). Using (6), we have determined an overall wavevector ¢ = (qf + qf) L2
for @ fixed at 0, n/4, and =/2. The results of these calculations for the superlattice
corresponding to that represented in figure 1(b) are shown in figure 3. For 6 = 0, (6)
reduces to ¢° = g2 = €,,@*/c?, and this is shown as figure 3(a). Note that using the above
formalism only transverse modes are considered at this angle. However, dispersionless
longitudinal modes exist at the @, frequencies and could be drawn as horizontal lines at
these frequencies. A similar situation exists at 8 = m/2, as shown in figure 3(c). Here only
€7z is used in the formalism, leading only to transverse modes as before. In a similar way
to the 8 = 0 case, horizontal lines corresponding to longitudinal modes could be drawn at
wy,, frequencies. Figure 3(b) represents the situation when @ takes a value of x/4. All
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Figure 3. Wavevector dependence of the GaAs-like
) polariton modes for a (GaAs)s/{(AlAs)s superiattice

240 40000 having an interface ronghness of 1.4 monolayers. The

q {em=) wavevector angles ¢ are (@) 0, (&) z/4, and (c) /2.

the modes now arise directly from applying (6), and they contain both longitudinal and
transverse contributions.

As g — 0, equation (6) is satisfied at the w» and w(,, frequencies, and as ¢ — oo the
solutions correspond to the vnretarded case already discussed and shown in figure 2(5). In
the intermediate polariton region it is no Ionger a necessary condition that €,, and ¢;; must
be of opposite sign as was the case for the phonon modes, although at least one of these
components must be positive in sign [23]. The polaritons are not therefore restricted to the
reststrahl (phonon) regions of the superlattice constituents. This is because (6) is essentiaily
a description of bulk polaritons propagating through the superlattice and this description

" includes modes which propagate in regions where there is no optical activity, in a similar
way to those which propagate in bulk isotropic media.

5. Conclusions

The above procedure can provide an accurate determination of anisotropic phonon and
polariton frequencies provided a suitable method is used for modelling superlattice dielectric
functions. The examples given above use dielectric function derived from a linear chain
model which considers only propagation normal to superlattice layers However, we have
shown how the results of such a simple model can be extended in order to find phonon
frequencies applicable to propagation in any direction.

The method is applicable in the long-wavelength limit appropriate to experimental
infrared and Raman scattering conditions. In the simple form presented above the modeiling
is totally macroscopic in nature, so it gives no indication of local displacements or fields.
However, such information is retrievable from the original microscopic model used to
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derive the dielectric functions. The resulting mode patterns are similar to those published
by Gerecke and Bechstedt [24], and will be presented in a separate publication.
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