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Ahstract. 711e macroscopic dielectric function of a suprlauice is used to describe lht angular 
depndence of the superlaaice's cotuined phonons and their associated polarimns at long 
wavelengfhs. Results are shown for short-period GaAs/AIAs superlattices "king use of a 
dielecuic wsor derived from a linear chain model lhat can lake account of the effects of interface 
roughness. The method gives a unified description of interface and confined optic phonon modes 
in lhe long-wavelength limit, and provides precise infarmslion about the angular dependence of 
mode heguencies that are accessible to micro-Raman and far infrared measurements. 

1. Introduction 

Interface (IF) polaritons in superlattices have been well known for a long time, and 
calculation of their dispersion properties has been a straightforward matter when considering 
alternative layers of thick bulk materials. In the case of a superlattice of altemating layers 
of thicknesses dl and dz and dielectric functions q(o) and E&). grown along the z axis, 
the dispersion relation for unretarded modes takes the form 11.21 

cos[q2(4 + 4)] = cosh(q,dt) cosh(qd2) + ~ ( E I / B Z  + ~ / E I )  sinh(q4)  sinh(qd2). 
(1) 

Electromagnetic IF modes of this type have an overall wavevector of the form (qx, 0, qz) and 
the local amplitudes of the fields have maxima at the interfaces and fall off exponentially 
from the interfaces with a decay constant qx. Thus qr serves both as a macroscopic parameter 
for the whole superlattice and as a local wavwector within each layer, whilst qz is a Bloch 
wavevector which is only applicable to the macroscopic propagation. 

Recent micro-Raman experiments [3-5] have permitted a study of modes of this type 
in semiconductor superlattices. However, the IF polaritons encountered in short-period 
superlattices are somewhat more complex than the situation represented by (I), most notably 
due to the presence of phonon confinement [5 ]  and interface roughness. Lattice dynamical 
calculations [W] for such modes are complicated due to the three-dimensional nature of the 
problem, and this has prompted a number of investigations in a continuum approximation 
[9,10]. Use of such approximations in a manner which accurately mirrors the behaviour 
expected from microscopic models has not proved trivial, however, although simple models 
which show the basic features are now being reported [I 1,121. 

However, at long wavelengths an alternative and very simple approach to this problem 
can be applied through the use of the macroscopic dielectric functions, as described by Chu 
and co-workers r13.141. In this paper we illustrate the use of this approach with particular 
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reference to short-period GaAs/AIAs superlattice dielectric functions calculated using the 
linear chain model of Samson et al [15,16]. This model also permits the inclusion of the 
effects of interface roughness. 

T Dwnelow and S R P Smith 

2. Macroscopic phonon and unretarded interface modes 

In the long wavelength limit, the dielectric properties of a superlattice may be represented 
by considering the structure as a single uniaxial medium. The simplest treatment, the bulk 
slab model, is applicable to long-period superlattices in which confinement effects may be 
ignored, and gives the principal components of the resulting dielectric tensor in the f a n  
[17,181 

In a short-period superlattice, the effects of confinement cannot be ignored. Each principal 
component of the dielectric tensor then contains a series of resonances at the appropriate 
confined mode frequencies. If damping terms are ignored, they take the form [141 

where w,, and OL, are the frequencies of the confined To and Lo phonons and RrP and 
R L ~  are their oscillator strengths. cmxx and cmZr are the principal components of the high- 
frequency dielectric function. The summation over p covers all phonon modes in the phonon 
bands of both constituents. The values of the various parameters depend on the confinement 
model employed For a superlattice containing interface roughness the dielectric tensor may 
still be represented by (4) and (5). but the roughness affects the mode parameters [la]. 

With a superlattice described as a uniaxial medium of the form represented by (2) and 
(3) or by (4) and (5), it is a simple matter to apply standani propagation expressions. Thus 
p-polarization propagation in the x-z plane is represented by 

(6) 

We now seek phonon-like solutions to (6) by taking the unretarded limit c -+ 03, so 
that the right hand side of (6) vanishes. We consider propagation in which the overall 
wavevector makes an angle 0 with the I axis, i.e. tan 0 = qx/q,. Then (6) becomes 

2 q x / ~ z r  + q : I E n  = 02/c2. 

tan2 e = -e&xx. (7) 

Chu, Ren and Chang [I31 describe modes satisfying (7) as anisotropic phonons, and 
this is indeed a good description in the macroscopic description represented by a dielectric 
tensor. However, as we shall show, they can also be thought of as long-wavelength IF 
polaritons, modified by, for instance, phonon confinement or interface roughness. 
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In order to demonstrate that (7) can represent IF polaritons we consider first the example 
of a long-period superlattice in which the modes are not perturbed by confinement. In this 
case we can start by using (1) to represent the ff modes in their unretarded limit. The cos. 
sinh and cosh terms in this expression may then be expanded as power series. In the long- 
wavelength limit (q.(dt + dz) << I, q,dl << 1. qxd2 < 1) the higher-order terms may be 
ignored. The overall result of this procedure is to produce (7) with ezx and E , ~  represented by 
(2) and (3). In the long-wavelength limit, therefore, (1) and (7) are equivalent representations 
of unretarded IF modes, and either expression could be used to obtain the same result. This 
is hardly surprising when one considers that the propagation expression used by Raj and 
Tilley [I81 in their derivation of (2) and (3) amounts to (1) in its fully retarded form; they 
showed that the long-wavelength limit of such an expression is (6) with czx and E, defined 
by (2) and (3) respectively. The two approaches therefore amount to ignoring retardation at 
different points in the calculation. It is wonh mentioning, however, that the method of Raj 
and Tilley is not the only one that produces equations (2) and (3); Agranovich and Kravtsov 
I171 arrive at the same result simply by considering average fields over the two layer types 
and using the appropriate boundary conditions at the interfaces. 

The above demonstrates that the same modes can either be described as phonons or 
unretarded IF polaritons in the bulk slab case. When extra effects such as confinement 
occur, (7) is still a rigorous description of p-polarized phonons within the long-wavelength 
limit. Provided the dielectric function is fully modelled, all contributions are automatically 
included in (7). so that interface contributions need not be separated from those due to 
confinement. 

We can use a similar analysis to that used for deriving (7) to represent s-polarization 
modes. The s-polarization analogue to (6) is 

In a similar manner to the ppolarizations case. in the non-retarded limit the right hand 
side of (8) disappears. The only solution corresponding to both qx and qz real is therefore 

6x1  + 00 (9) 

which occurs at To modes. Thus phonon modes in s polarization are not anisotmpic. 

3. Application to linear chain model 

The strength of using (7) and (9) to represent the anisotropy of the modes is that the 
equations can be used with any superlattice model that yields a dielectric function. Such a 
model may be either continuum or microscopic in nature, and in principle may include extra 
effects such as plasmons. Derivation of dielectric functions from a linear chain microscopic 
model is problematic because the long-range forces m o t  be explicitly incorporated in 
a straightforward way, however. Samson er a1 [IS. 161 evade this problem by using only 
effective short-range (nearest and next-nearest neighbour) force constants applicable either to 
longitudinal or to transverse vibrations, but not to both simultaneously. Overall superlattice 
dielectric functions which take the same form as (4) and ( 5 )  can be obtained from such 
a model by making use of effective ionic charges obtained from bulk W T ~  splittings. 
These dielecfiic functions, although derived from a linear chain model, fully describe 
electromagnetic propagation, in the long-wavelength limit, in any direction. A further 
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Figure 1. Principal components ex= (solid lines) and c~~ (dashed lines) of the dielectric Function 
of (GiAs)s/(AIAs)s superlattices in the region of GaAs-like optic phonons. (a) Superlaaice 
with perfect interfaces. (b) Suprlatlia having an interface roughness corresponding to W = 
1.4 monolayers. All parameten are the same as those used in (161. 

embellishment to the model is the incorporation, in a manner similar to that used by Chang 
and Mitra [19,20] for mixed crystals, of the effects of interface roughness; since each layer 
may contain a mixture of atom types, an average susceptibility at each site is used. Full 
details are given elsewhere [16]. 

The pnncipal components of the dielectric function in the GaAs region of a 
(GaAs)~/(AlAs)s superlattice with perfect interfaces are shown in figure I@), calculated 
using the model of Samson e ta /  1161 described above. In the frequency range shown, the 
numerical index /.& on each marked mode frequency wP and mP is chosen to be the same 
as the index m which represents the number of phonon half-wavelengths within the GaAs 
layer. Only odd m modes contribute to the dielectric function because even m modes have 
no overall dipole moment. As well as the poles in cXx or zeroes in E,, which occur at the 
confined mode frequencies wm and oh, poles in eZz and zeroes in err are also marked, 
and labelled in the form WX, and OL, respectively. Thus above each wm frequency there 
is a corresponding o h  frequency at zero in and below each q, frequency there is a 
corresponding dm at a pole in E ~ ~ .  Some useful enlightenment on the pairing of orn! and 

and of 4, and w ~ m  frequencies can be obtained by noting that (4) and (5) may be 
re-expressed as 

Figure I(b) shows the components for a similar superlattice with interface roughness 
corresponding to an error function width W of 1.4 monolayers, a value which agrees with far 
infrared and Raman measurements on similar samples 1161. The modes are marked in the 
same way as for a superlattice with perfect interfaces (the additional alloy-like modes which 
appear in the model [15,16] have been ignored in this paper since they have insignificant 
oscillator strengths). However, the mode pattems of the atomic displacement are slightly 
changed from the previous case. It is evident from comparing figures l(a) and I@) that the 
dielectric functions are noticeably influenced by interface roughness. The principal effect is 
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that the lower index m,,, and % modes are lowered in frequency and that the higher-index 
modes are raised in frequency. The reason for this is discussed by, for instance, Kechrakos 
eta1 [211, Molinari eta!  [22], and Samson et a1 1161. 

3001 I 3001 

24O0- *I+ rh 2 4 O o u  74 72 
8 -  e- 

Figurr 2. Angular dependence of the GaAslike optic phonon mode frequencies of 
(GaAs)s/(AIAs)s superlanices. (a)  Superlanice with perfect inrerfaces. (b )  Superlanice having 
an interlace roughness corresponding Lo W = 1.4 monolayers. 

The ahgular variation of the p-polarized phonon modes corresponding to (7) is plotted 
in figure 2. Before discussing the overall curves we consider the form of the modes present 
at 0 = 0 and 6 = n/2. At 0 = 0 the p-polarization modes are associated with either poles 
in cXx (the confined m frequencies w,, at which E = 0) or the zeroes in E, (the confined 
LO frequencies oh, at which D = 0). Conversely, at 0 = n/2, each mode is associated 
with either a zero in czx (an OL, frequency) or a pole in E ,  (an 4, frequency). These two 
0 = n/2 cases can quite legitimately be described as and TO fiequencies respectively in 
the same way as for 0 = 0. P-polarized TO modes, having E = 0 and finite D transverse to 
the overall wavevector, propagate parallel to the interfaces (in the x direction) at poles in 
(4, frequencies). LO modes, having D = 0 but finite E parallel to the overall wavevector, 
also propagate in the x direction, but at frequencies & corresponding to zeroes in czx. 
This behaviour is obvious when one notes the similarity of (10) and (1 1). and it is also clear 
that within the macroscopic description q, and WL, are no more fundamental than 4, and 
&. Although h e  fact that q,,, and are eigenfrequencies which directly come out of 
a linear chain model makes them inadvertently appeai more fundamental, three-dimensional 
micr6scopic models can calculate 4, and 06, directly in a similar manner. 

Since the macroscopic model described here taken no account of displacements within 
individual layers, some confusion may arise in the notation used to label the modes at 
0 = k/2 our notation is somewhat different from that used by other authors in continuum 
or microscopic models. In our case the only important wavevector is a macroscopic one 
which applies to the whole superlattice, and at 0 = n/2 this is by definition directed along 
the x axis, parallel to the layers. However, within a microscopic model the confinement is 
implicitly associated with a local wavevector, directed perpendicular to the layers. which 
is considerably larger than the microscopic wavevector considered here. With respect to 
the microscopic wavevector, modes at 4, are Lo-like and modes at wL, are m-like. 
and this microscopic form of designation is usually used within other models, including 
continuum models. However, the x-propagating modes at 4, are all pure m phonons in 
the macroscopic description given here, and the modes propagating at oL are pure MS. 
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This explains the potentially confusing phenomenon that the 0;h frequencies tend to be 
higher than the w$, frequencies despite the fact that the former represent TO frequencies 
and the latter LO frequencies. 

The procedure used in assigning index m to the primed frequencies W;., and 06, is 
inevitably somewhat arbitrary, so this index does not necessarily have any special physical 
significance. In particular, it should be noted that the value of m used in labelling o;k, 
and WL, is not an indication of the number of phonon half-wavelengths confined within 
the GaAs layer. The x-propagating phonon at labelled frequency 4, in the W = 0 case, 
for instance, has nearly three half-wavelengths confined within the GaAs layer. Although 
an effective medium model cannot directly model local displacements, this result can be 
anticipated from the observation that O;l is very close to a. This is due to the fact that 
the mI mode strength is considerably greater than that of Lq (see the effect of ow on 
4, in the dielechic function of figure I(a)), and is an effect which is also predicted by 
continuum 1121 and microscopic [7,8] models. 

We now consider the frequency of the ppolarization modes in the range 0 -z 6' 4 x/2. 
Depending on the precise details of the forms of the dielectric functions, mode frequencies 
may either increase or decrease with 6'. Furthermore, modes which are at ornr frequencies 
at 6' = 0 may shift either to OL or to W;. frequencies, where the indices m and n need not 
be the same, at 0 = x/2.  Similarly, modes which are at ol, frequencies at 6' = 0 may 
shift to O;, or &, at 6' = r/2. A comparison of figures 2(a) and 2(b) shows that interface 
roughness can qualitatively change the behaviour of several modes in these respec&. The 
determining factor is that 6- and ezz must be of opposite sign for the modes to exist, as is 
evident from (7). Since interface roughness affects the order of the various orm, h, o&, 
and o6 mode frequencies, it also affects the frequency intervals within which the above 
condition is satisfied (see figure 1). 

The macroscopic fields associated with the p-polarization modes can be determined 
through application of the unretarded plane wave forms of Maxwell's equations. They 
show that there is an E field in the wavevector direction and a D field perpendicular to 
i t  There is no H field These observations indicate that, within the above description, the 
modes are best described as phonons of mixed T(F-M character. However. other authors, 
using continuum models, equivalently describe such modes as hybrids of phonons with IF 
polaritons [12]. 

S-polarization modes do not vary with 8, and are TO modes occurring at qs. frequencies, 
as indicated by (9). For the sake of clarity, they have not been included in figure 2. 

4. Polariton modes 

It is also informative to consider the general ppolarization polaritons using the full retarded 
form of (6). Using (6). we have determined an overall wavevector q = (4: + q;)l/* 
for 0 fixed at 0, n/4, and x/2. The results of these calculations for the superlattice 
corresponding to that represented in figure l(b) are shown in figure 3. For 6' = 0, (6) 
reduces to q2 = 4: = 6rroz/cz, and this is shown as figre 3(a). Note that using the above 
formalism only transverse modes are considered at this angle. However, dispersionless 
longitudinal modes exist at the oh frequencies and could be drawn as horizontal lies at 
these frequencies. A similar situation exists at 0 = n/2, as shown in figure 3(c). Here only 
ezz is used in the formalism, leading only to transverse modes as before. In a similar way 
to the B = 0 case, horizontal lines corresponding to longitudinal modes could be drawn at 
w$, frequencies. Figure 3(b) represents the situation when 0 takes a value of n/4. All 
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FWre 3. Wavevector dependence of the GaAs-like 
polariton modes for a (daAs)s / (~~~s) j  super~anice 
havim an inerface muzhness of 1.4 monolayers. The 240, L dnnnn 

the modes now arise directly from applying (6). and they contain both longitudinal and 
transverse contributions. 

As q + 0, equation (6) is satisfied at the OL, and f&, frequencies, and as q + 00 the 
solutions correspond to the unretarded case already discussed and shown in figure 2(b). In 
the intermediate polariton region it is no longer a necessary condition that eXx and eZr must 
be of opposite sign as was the case for the phonon modes, although at least one of these 
components must be positive in sign [23]. The polaritons are not therefore resbicted to the 
reststrahl (phonon) regions of the superlattice constituents. This is because (6) is essentially 
a description of bulk polaritons propagating through the superlattice and this description 
includes modes which propagate in regions where there is no optical activity, in a similar 
way to those which propagate in bulk isotropic media 

5. Conclusions 

The above procedure can provide an accurate determination of anisotropic phonon and 
polariton frequencies provided a suitable method is used for modelling superlattice dielectric 
functions. The examples given above use dielectric function derived from a linear chain 
model which considers only propagation normal to superlattice layers. However, we have 
shown how the results of such a simple model can be extended in order to find phonon 
frequencies applicable to propagation in any direction. 

The method is applicable in the long-wavelength limit appropriate to experimental 
infrared and Raman scattering conditions. In the simple form presented above the modelling 
is totally macroscopic in nature, so it gives no indication of local displacements or fields. 
However, such information is retrievable from the original microscopic model used to 
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derive the dielectric functions. The resulting mode pattems are similar to those published 
by Gerecke and Bechstedt [24], and will be presented in a separate publication. 

T Dumelow and S R P Smith 
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